Surrogate-driven motion models from cone-beam CT for motion management in radiotherapy treatments

نویسنده

  • J. L. Martin
چکیده

This thesis details a variety of methods to build a surrogate-driven motion model from a cone-beam CT (CBCT) scan. The methods are intended to form a key constituent of a tracked RT treatment system, by providing a markerless means of tracking tumour and organs at risk (OAR) positions in real-time. The beam can then be adjusted to account for the respiratory motion of the tumour, whilst ensuring no adverse e↵ects on the OAR from the adjustment in the beam. An approach to describe an iterative method to markerlessly track the lung tumour region is presented. A motion model is built of the tumour region using the CBCT projections, which then gives tumour position information during treatment. For simulated data, the motion model was able to reduce the mean L2-norm error from 4.1 to 1.0 mm, relative to the mean position. The model was used to account for the motion of an object placed within a respiratory phantom. When used to perform a motion compensated reconstruction (MCR), measured dimensions of this object agreed to within the voxel size (1 mm cube) used for the reconstruction. The method was applied to 6 clinical datasets. Improvements in edge contrast of the tumour were seen, and compared to clinically-derived positions for the tumour centres, the mean absolute errors in superior-inferior directions was reduced to under 2.5 mm. The model is then subsequently extended to monitor both tumour and OAR regions during treatment. This extended approach uses both the planning 4DCT and CBCT scans, focusing on the strengths of each respective dataset. Results are presented on three simulated and three clinical datasets. For the simulated data, maximal L2-norm errors were reduced from 14.8 to 4.86 mm. Improvements in edge contrast in the diaphragm and lung regions were seen in the MCR for the clinical data. A final approach to building a model of the entire patient is then presented, utilising only the CBCT data. An optical-flow-based approach is taken, which is adapted to the unique nature of the CBCT data via some interesting conceptualisations. Results on a simulated case are presented, showing increased edge contrast in the MCR using the fitted motion model. Mean L2-norm errors in the tumour region were reduced from 4.2 to 2.6 mm. Future work is discussed, with a variety of extensions to the methods proposed. With further development, it is hoped that some of the ideas detailed could be translated into the clinic and have a direct impact on patient treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction-driven Respiratory Motion Atlas Formation for 4D Image-guided Radiation Therapy in Lung

Respiratory motion challenges lung radiation therapy with uncertainties of the location of important anatomical structures in the thorax. To capture the trajectory of the motion, dense image matching methods and learning-based motion prediction methods have been commonly used. However, both methods have limitations. Serious motion artifacts in treatment-guidance images, such as streak artifacts...

متن کامل

Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate.

PURPOSE To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. METHODS AND MATERIALS The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional p...

متن کامل

Improving iterative 4D CBCT through the use of motion information

In Image-Guided RadioTherapy (IGRT) of lung tumors, patients undergo a 4D CT, on the basis of which their treatment is planned. It is implicitely assumed that their breathing motion will not change much throughout the treatment, and remain close to what it was during the 4D CT acquisition. During the treatment, several cone beam CT acquisitions are performed, and used to re-position the patient...

متن کامل

To frame or not to frame? Cone‐beam CT‐based analysis of head immobilization devices specific to linac‐based stereotactic radiosurgery and radiotherapy

PURPOSE Noninvasive frameless systems are increasingly being utilized for head immobilization in stereotactic radiosurgery (SRS). Knowing the head positioning reproducibility of frameless systems and their respective ability to limit intrafractional head motion is important in order to safely perform SRS. The purpose of this study was to evaluate and compare the intrafractional head motion of a...

متن کامل

Comparison of gated and dynamic cone-beam CT reconstruction methods

In the past few years, there has been an increasing interest of the radiation oncology community in cone-beam computed tomography (CT) scanners integrated into the gantry of medical linear accelerators. This imaging device allows to acquire CT images of the patient in treatment position. Unfortunately, like for other CT scanners, the respiratory motion of the patient during acquisition causes a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015